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The archazolids are a family of unsaturated polyketides with low Scheme 1. Retrosynthetic Analysis of the Archazolids.
nanomolar inhibitory activity and excellent selectivity against
mammalian V-ATPases (Scheme!Ijhe isolation of archazolids
A (1) and B @) from the myxobacteriurArchangium gephyrand
the constitutions of these natural products were reported g Ho
et al. several years agan 2006, Menche and co-workers disclosed
the relative and absolute configurations Ioind 2, which were
obtained through careful analysis &IC-'H coupling constants
combined with degradation studi®sShortly thereafter, this impres-
sive exercise in structure elucidation was matched by a total
synthesis of archazolid AThe structure of archazolid G); the

Stille coupling

B-glucoside of archazolid A isolated from the myxobacterium  {1= g fe =t areiez i A D 4a (R = H)
Cystobactewiolaceus was also disclosed in 20G&Ve now report Ry = CHy. Ry = f-glucoside: archazolid C (3) 4P (R = CH2CH,CHCH=CH,)
an efficient total synthesis of archazolid B, the least stable and least

abundant member of the family.

The archazolids attracted our interest because of their exceptional Meol/l R L [
bioactivity and unusual structural features. Their 24-membered A OTBS SnMe. 14
macrolactone ring includes a rarg Z,E)-triene moiety, whose o g 6
chemistry we were familiar with from our previous work on highly s

unsaturated pyrone polyketideBrom the outset, our synthetic plan
was governed by a desire to install th&Z,E)-triene unit as late

as possible to avoid potentially troublesome (cyclo)isomerizations.
As our plan for archazolid B unfolded, however, we found it more
appealing to close the 24-membered macrolactone through ring-
closing metathesis (RCM), rather than intramolecular cross-coupling
reactions (Scheme $%¥. This strategy would confine protecting
group operations and oxidation state adjustments to a minimum. with inferior yield and stereoselectivity. Compouf# underwent

We had doubts however, whether a “simple” RCM involving diene g highly selective Trost Alder-ene reaction with 3-butenol to afford
4a (R = H) would initiate at the more electron-rich diene moiety triene 13 in good yield!* To proceed with high regioselectivity,
rather than at the other terminal alkene, which would presumably this reaction required the presence of a coordinating carbonate (or

result in an unproductive excision of an unsaturafeldctone. MOM) protecting group. Two-step oxidation of allylic alcohts
Therefore, we decided to promote the desired initiation through then gave carboxylic aciél in nearly quantitative yield.
relay-ring closing metathesis (RRCM) usiag as a precursor [R The southern thiazole building blodkwas elaborated from the

= (CH,)sCHCH;].% Once the corresponding, relatively stable Ru known hydroxyalky! thiazolecarboxylafie} (available from leucine
vinyl alkylidene would form, it would be expected to react with in six steps)? via carbamoylation, followed by chemoselective
the remaining terminal double bond faster than with any of the reduction and Brown crotylatidhto efficiently yield multigram
more substituted double bonds present. guantities of this fragmerit.

Further retrosynthetic disconnection4if, as shown in Scheme The synthesis of the remaining northwestern building blbck
1, yielded three building blocks: stannafeaodide6, and thiazole started from iododienoatks, which can be obtained in three steps
7, corresponding to the northwestern, northeastern, and southernfrom propargyl alcohot* Reduction followed by oxidation gave
regions of archazolid B, respectively. These could be assembledan aldehyde that underwent an efficient Evagealdol addition

using the reactions shown in Scheme 2. with the boron enolate of benzyl oxazolidinohé to afford 17.15

Our northeastern building blogkwas prepared from the known  Conversion into the corresponding Weinreb amide followed by silyl
ynone9, easily available in three steps fror){Roche ester8) protection of the secondary alcohol and a phosphonate Claisen
(Scheme 2y.A highly diastereoselective reduction 8fwith (S)- reaction gavés-keto phosphonat#8, which underwent a Horner

alpine borane gave a propargylic alcohol, which was protected as Wadsworth-Emmons reaction with endld to afford dienone20.
the triisoproylsilyl ether and selectively desilylated to give primary A highly diastereoselective reduction with NaBlfbllowed by
alcohol 10. Subsequent oxidation and olefination yielded dibro- etherification and iodinetin exchange gave our building blo&i®
moalkenell. Installation of a Z)-vinyl iodide using the method Esterification of7 with 6 required Ru-catalyzed activation 6f
of Tanino and Miyashitd? followed by exchange of the secondary as the acyl ketene acetal according to Kitsince all base-mediated
silyl protecting group for aert-butylcarbonate, furnished compound methods led to the migration of the €£3-double bond. Subse-
12. By comparison, attempted Sterikhao olefination proceeded  quent thermal deprotection of the Boc group gave io@Bevhich
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Scheme 2. Preparation of the Building Blocks?
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aReagents and conditions: (a9){alpine borane, THF, 40C (89%,
>20:1 dr); (b) TIPSCI, imidazole, DMAP, Ci€l, (93%); (c) HOAc, THF/
H20 (97%); (d) DessMartin periodinane, NaHC§ CHxCly; (e) PPh,
CBry, K2CO3, CHCI, (75% for two steps); (f) MeLi, Cul, gO; I, (77%);
(g) TBAF, THF; (h) BogO, pyridine, DMAP (99% for two steps); (i)
RuCp(MeCN)PFs, 3-buten-1-ol, acetone (88%); (j) Desklartin perio-
dinane, NaHC@ CHyCly; (k) NaClO,, NaH,PQs, 2-methyl-2-butene,
tBUOH, H0 (99% for two steps); (I) CDI, MeNHE(88%); (m) DIBAL-H,
PhCH;, THF (80%); (n) (-)-MeOB(lpc), KOtBu, nBulLi, trans-2-butene,
THF (90%); (0) DIBAL-H, CHCI, (96%); (p) Dess-Martin periodinane,
NaHCG;, CH,Cly; (g) 16, BuBOTf, EsN, CH,Cl, (76% for two steps);
(r) MeONHMeHCI, MesAl, THF (80%); (s) TBSCI, imidazole, C}Cl»
(89%); (t) nBuLi, diethylethylphosphonate, THF (95%); (19, Ba(OH),
40:1 THF/HO (79%); (v) NaBH, MeOH (92%); (w) MeOBF4, proton
sponge, CHCl, (89%); (x) nBuLi, MesSnClI, THF.

underwent a modified Liebeskind coupling with vinyl stann&ne

to yield the acyclic metathesis precursti.’® It is interesting to
note that both palladium and copper were required to promote this
cross-coupling. The relay ring-closing metathesis using Grubbs’

Scheme 3. Completion of the Synthesis?

—» archazolid B (2)

4b

21:R= Boc
22:R=

b

a Reagents and conditions: (a) [Ru@lymene)}, ethoxyacetylene; then
7, TsOH (54%); (b) Si@, 125°C (66%); (c)5, Pd(PPh)s, CuTC, DMF
(32%; 92% based on recoveréy (d) Grubbs’ Il, PhCH (27%); (e) 3:6:1
formic acid/THF/HO (84%).

transition-metal-catalyzed reactions operating on halogenated sub-
strates. The final Ru-catalyzed ring-closing metathesis, by contrast,
underscores the usefulness of relay tactics for the synthesis of highly
unsaturated macrolactones where several potential initiation sites
exist. Further elaboration of our general strategy should give rise
to archazolids A and C as well as a multitude of structurally
simplified and biologically interesting analogues.
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